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LETTER TO THE EDITOR

A description of the superalgebraosp(2n + 1/2m) via
Green generators

T D Paley

Laboratoire de Gravitation et Cosmologie Relativistes, Univerdtierre-et-Marie-Curie,
4, place Jussieu, 75005 Paris, France

Received 10 January 1996

Abstract. An alternative description of the Lie superalgebrg(2n + 1/2m) in terms of
generators and relations is given. The generators, called Green generators, are the root vectors
of osp(2n + 1/2m), corresponding to the orthogonal roots.

The root system of the orthosymplectic Lie superalgebga2n + 1/2m) reads [1]
A={keg+ne; e 2eli#j=1...m+n=N;k=1 ..., m& n==} Q)

The rootses, ..., ey are orthogonal with respect to the Killing form enp(2n + 1/2m).
In the present letter we describe the universal enveloping algéprgp (2n + 1/2m)] of
osp(2n+1/2m) in terms of the root vector@i = e, corresponding tere;, i = 1,..., N.
All a* are homogeneous elements with = {0, 1}-grading

N . 1 fori <m
deda;") = (i) = 1 - . (2
0 fori > m.

Our main result is contained in the following theorem.

Theorem Ulosp(2n+1/2m)] is an associative (complex) superalgebra with 1, generators

af,af,...,aifl, anf,anfﬂ,...,arfﬂ Eaf, (©)
relations

e a1 /1 = 20"8;a] Vii—jl<1 n== (49)

{[ay;zl’ aZH-l:l’ [ay;n’ a;z,+2]} = 0 (4b)

[[aX,_l, az,], alrf,] =0 n=d= (4c)

and Z,-grading induced from (2).

1 Permanent address: Institute for Nuclear Research and Nuclear Energy, 1784 Sofia, Bulgaria. E-mail:
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Throughout k, y] = xy — yx, {x, y} = xy + yx, [x, y] = xy — (=1)9€90ded) . - This
theorem extends the results of [2], where we have showroka®n + 1/2m) is generated
by operators (3), which satisfy the relations

[[a;.a!l. af] = 2¢M88c _ya; — 26 (—1) W58, _ca]
i,j,k=1,...,N &, ne==.

Equations (5) are among the supercommutation relations of all Cartan—Weyl generators
a;.la]. af] i,jok=1,... N £.n.6 =1 (6)

The rest of the supercommutation relations follow from (5) and the (graded) Jacoby identity
(i’j’k’l:]'"'-vN; sﬂla&(ﬂ:ﬂ:)i

[[a;. ajl, [af, a/1l = 2¢M 8,8 _ylaf, af] — 2¢0 (=)0 s8. c[a], af]
_2(p(l>(_1)(j>(k>5j15wﬁﬂ|[aig7 a/i]l + Z(P(l)(_1)(i>(j>+<i><k>5i15w,7$|[a;7, a/i]l~ (7

Relations (4) are a small part of (5) and (7). According to the above theorem, however, all
equations (5) and (7) follow from (4). Therefore relations (4) contain all information about
osp(2n + 1/2m). This is essentially our new result.

The operators (3) with relations (5) are closely related to the generalized quantum
statistics, introduced by Green [3]a1i, ...,ar are para-Bose operators (parabosons),
WhereaSa,jf PP at 4, are para-Fermi operators (parafermions). Note that the parabosons
do not commute with the parafermions (in the Fock representaton the bosons anticommute
with the fermions [2]).

We refer to any set of generators (3) with relations (4)Gasen generatorsG(n/m)
denotes theGreen superalgebranamely the (free) associative algebra with unity 1,
generators (3), relations (4) and grading (2). The theorem assertg[ihat(2n+1/2m)] =
G(n/m).

One could prove the theorem by deriving (5) directly from (4). Here we give another
proof. To this end we recall the Chevalley definitionlofosp(2n +1/2m)] and write down

®)

explicit relations between the Green and the Chevalley generatorée;bgti, j =1,..., N
be anN x N symmetric Cartan matrix chosen as [4]
@) = D811+ (=DY8 a1 = [(CDYY + (D185 + 8imtnSjomen- ®)

Then Ulosp(2n 4+ 1/2m)] is defined as an associative superalgebra with 1 in terms of a
number of generators subject to relations. The generators are the Chevalley gererators

ei, f; i =1,...,N),; the relations are the Cartan—Kac relations
[hi.hj] =0 (%)
[hi, ej] = aije; (9b)
[hi, fi] = —aij fj (90)
Lei. i1 =6ijhi (9d)

the e-Serre relations
(el) [ei,ej]] =0 forfi —jl>1 (€2) [ei, [ei, eix1]]l =0 i #N
(83) {[em—l’ em]a [ema el71+1]} = 0 (84) [eNa [EN, [eN’ eN—l]]] = 0
and the f-Serre relations obtained from (10) by replaciagwith f; everywhere. The
grading onUlosp(2n + 1/2m)] is induced from de@,) = dedf,) = 1, dede;) =
deq f;) =0 fori # m.

Let us only note the connection to the root system (1). TheGhevalley elements
are the simple roots; = ¢; — €41, j = 1,..., N — 1, hy = ey, the simple root vectors

(10)
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e; = e, and the negative root vectorg = e, i = 1,...,N. Then(h;, h;) = a;; or
equivalently(s;, ¢;) = —(—1)%§;; [4].

Introduce the following elements iti[osp(2n + 1/2m)] (i # N):
a” = (=D OV, [eis, [ .. [en—2. [en_1. en]] .. 111 ay =~/2ey (11a)
af = —V2[fi [fisns oo [fv—zs [fv—1, 1] - ay = —v2fy (11b)

which will be refered to asreation € = +) and annihilation § = —) operators(CAOS).

The proof of the theorem will be a consequence of a few propositions. The aim is to
show that the relations among the Chevalley generators hold if and only dabe (11)
are Green generators.

Proposition 1  For anyi # N

[ei, af]l = _(_1)(j+1>5ijaj++1 (12a)
[fi.a;]=—(=D"" V50, (12b)
[ei.a;] = —(=D)Y6i1a; 4 (12c)
[fi.a]] =6it1 0] ;. (12d)

Proof. We skip the proof of (12) and (12). It is simple and follows only from (9),e()
and (f1). Here are some key points in the proof of )2

(i) The casei < j — 1 follows only from (f1); the case = j — 1 reduces to the
definition ofa;'; the case = j is derived relatively easily fromf1) and (£2).

(i) The casei = m > j. We know from above thatff,_1,a, . ,] = [fu.a, ] = 0.
Therefore

antf]_ = [fm719 [fm[ferlv a,;,LJrz]]] = [[fmfls [fmv fm+1]] s a;Jrz]'

Hence

|[fma a;,__l]l = I[fm’ [[fm—lv [fm» fm+l]] ’ ant+2]]| = I[Z’ an-:+2]l

where

= |[fm’ |[fm—1’ |[fm’ fm+1]|]l]|
= I[I[ S fm—l]|7 |[fm’ fm+l]|]| + |[fm—la |[fm’ |[fma fm-‘rl]l]]]l
= {[fmfls fm]v [fms fm+1]} + [fWL71’ {fms [fmv ferl]}]
=0
according to (2) and (f3). This is the only place one uses the Serre relatjf®),(which
was recently established [5]. Thug,[,a! ;] = 0. Then by induction ory one obtains
that [£,,,a;] = 0 for anym > j.
(iii) The casei # m, i > j. Let1<i < N — 1. From above (since dég) = 0)
[fi-1, a,iz] =[fi afjrz] = 0. Therefore
Lfi.af 3] = [fioa ] = U Ui Ui Ufier 6t = [y ]
where
y =i Ufima, Ui fisdlll = =[0 fias £, fimad. £

Now we use the following identity: ifd, c] = 0, then
[[c, b]. a], b] = 3lllc, b], b], a] + 3[lla, b], b], c].



L174 Letter to the Editor

It yields

y =~ fiss, £il fimal, il = =3[0 fisas fils £i1, fimal = S0 fims filh fi], fisal =0

since from (2) [[fi1, fi]. fil = 0. If i = N — 1 the proof is even simpler. Thus,
[fi.a",] =0foranyi #m. Letm #i > j +1. Assume [;,a;'] = 0. Then

[fioa gl = Ui [ fi-1. a1 = L fis il af 1+ [ fi-1. [fin a1 = 0.

Hence [f;, a;'] = 0 for eachm #i > j (i # N).
From (i)—(iii) follows (124). The derivation of (12) is similar. This completes the

proof. O

Proposition 2 Ulosp(2n + 1/2m)] is generated by theaos (11). More precisely,
hy = —%|[a;,, a;]l ey = ;éa;, v = —jéa; (13a)
hi = %l[ai_-‘rl’ “ittl]l - %l[ai_’ a;'] e = %I[ai_’ aiil]l (13)
ﬁ=%|[ai+9ai11]| i #N.

Proof. Equations (13) are evident. From (9) and (11) af_j.af] =

—2len—1, en]s fv] = —2[en—1, [ens fv]l = 2[hn, en_1] = 2ey_1. Thus expressions (&3
for ey_1 and similarly for fy_1 hold. Then

1
%l[a;,, ayl - %l[axlfl’ ay_4] = —hy — 72'“[ en-1,en], ay 4l

1 1
= — hN — 72|[|[ eéN_1, ajv'fl]l, €N]I — 72[81\/,1, I[eN, a;71]|]|
=hy_1

and (13) holds fori = N — 1. The rest is proved by induction. Assume g1 ®olds for
k=i+1i+2,..., N —1. Then

sla; . af ] = 5D Ple a 4], a4l
= ;=D e, [ar,q. ai" 411
=D e, hig1+hisa+ -+ hy]
=¢;
similarly one verifies (1B) for f;. Finally
slai afad = 3lar . a1 = 3lai. iyl = 3DV e a6
= 3la; . a0l = 3l e a1 ag] — 3(=D " e, [a;4, 411
= [e:;, fil
= h;.
Hence equations (13 hold for anyi # N. O
Proposition 3 Thecaos (11) are Green generators, i.e. they satisfy equations (4).

Proof. Replacinge; and f; in (12) with the corresponding expressions from3one
derives equations @ for all i — j| = 1 andnp = £. Equation (4), corresponding to
i = j, follows from |[aj,ai+]| =—-2h;+hi;1+---+hy),i=1,2,..., N, the Cartan—-Kac
relations (9) and the Cartan matrix (5). Equations, ¢ follow immediately from the Serre
relations €3), (f3), (e4), (f4) (see (10)) and the definition (11) of tleaos. O
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So far we have established that the operators (11) can be considered as new generating
elements ofU[osp(2n + 1/2m)] (proposition 2), which satisfy the Green relations (4)
(proposition 3). Therefor& [osp(2n+ 1/2m)] is either equal to the Green algebtan/m)
or is a factor algebra of it. In order to show thafosp(2n + 1/2m)] = G(n/m) we need
to prove that any relation i/[osp(2n 4+ 1/2m)] is a consequence of the Green relations.

To this end it suffices to show that equations (9) and (10), expressed in terms @fdke
according to (13), can be derived from (4).

Proposition 4 Let al.i, i =1,...,N be Green generators, i.e. they obey relations (4).
Then the operators,;, ¢;, f; (i = 1,..., N), defined with (13), satisfy equations (9) and
(20).

Proof. The proof resolves into several cases. We mention some of them. Equatjas (9
trivial. Consider for instance {9 for i, j ## N. From the graded Jacoby identity one has

[hi’ e/] = %[l[ai:,-lv ait_l]l ) |[Cl<7, ajt,-l]l] - %[l[a;9 alJr]I ) I[a'i’ a/++1]|]
= lem[l[ iy “ﬁﬂl"’j_]l’“ﬂﬂl + 211|[“'_’ [Ma:s, “ﬁl]l’“;rl”
_Zjil[l[ll: a[_7 a[+]|7 aj_]l’ a}:-l]l - %1'[0‘_7 I[l[ a[_’ a[+]|7 a}:-]_]l]] .
Applying (4) here one ends up with® The other cases of (9) are similar or simpler.

Special care should be taken for the grading of the operators that appear. To check (10)
one needsi(j # N)

I[ei’ ej]l = %1'['[ ai_’ ai—:-]_]l ’ |[aj_’ ajt:-l]l]l
— %(_1)[(1)+(1+1)+]<J>|[aj—’ e, ai++l]| , athl]I]I + Zﬂ[l[l[ a;, ai-:l]l , a_]l , ajtrl]l
which, taking into account that—1)[@++DIE-D+@06+1) — (1)@ finally yields
[ei, el = 3D 811 10, a1 — 3-8 j1ala; 4, 4]
i,j=1..,N-1 (14)

From (14) one derives the Serre relationgl)( (1), (e2), (f2). Similarly
(e3), (f3), (e4), (f4) follow from (4b). For instance{[e,_1, enl, [em, emi1]} =

—zll{[an:_l, a;+1], la,. a;;+2]} = 0 and By, [en, [en, en-1lll = —[lay_;1,ayl.ay]l = 0.
HenceUlosp(2n + 1/2m)] = G(n/m), which completes the proof of the proposition and
hence of the theorem. O

We have shown that apart from the Chevalley definition the associative superalgebra
Ulosp(2n + 1/2m)] and hence the Lie superalgehrep(2n + 1/2m) allows an alternative
description in terms of generators (3) subject to the Green relations (4). This, in particular,
means that the Green generators satisfy equations (Shfi,ezf, ...,ar are para-Bose
operators andan, ...,a;.,, are para-Fermi operators.

Our interest in the present work originates from the study of the Wigner quantum
oscillators [6]. The defining relations for aw-dimensional such oscillator are
vazl[{aj,a;},aki] = :I:2a,§t. The operators (5) satisfy these equations for any=
1,..., N and therefore provide examples of Wigner oscillators. dke(3/2) oscillator
was studied in [7]. Already in this quite simple case the verification of all triple relations (5)
is a non-trivial task and it is going to be much more difficult for the genesa(2n +1/2m)
oscillator. The theorem now asserts that it is sufficient to check (or, which is more
important, to solve) the smaller set of equations (4), which is a considerable simplification.
The same arguments also hold in the more general context of the representations of
osp(2n + 1/2m), which are at present only classified [1] (explicit expressions exist only
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for osp(1/2) [10], osp(2/2) [11] andosp(3/2) [9]). We hope that relations (4), combined
with the generalization of the Green anzatz technique [12], provide a good background for
constructing new representations. The same holds for any of the subalgeb¢as/2m),
gl(n/m), so(2n + 1), so(2n), gl(n) andgl(m) since the latter can be expressed in a rather
natural way via Green generators (see (2.5)—(2.9) in [9]). These are the pre-oscillator
realizations, which in the Fock representation reduce to the known Schwinger realizations.
Recently, it was shown that the Green description with only parafermians Q) or
with only parabosonsn(= 0) can be modified to the quantum algebladso(2n + 1)]
[13] and U,[osp(1/2m)] [14]. This leads to natural Hopf algebra deformations of the
para-Fermi and of the para-Bose statistics. We believe it will be possible to generalize
the Green description to the quantum algebfdosp(2n + 1/2m)]. The latter would
amount to a simultaneous deformation of the parabosons and the parafermions (in the Fock
representation, of the bosons and the fermions) as one single supermultiplet.

The author is grateful to Professor R Kerner for the kind hospitality at the Laboratory of
Gravitation and Relativistic Cosmology in the University of Pierre and Marie Curie. Itis a
pleasure to thank DN | Stoilova for constructive discussions. The research was supported
through contractb—416 of the National Science Fund of Bulgaria.
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