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LETTER TO THE EDITOR

A description of the superalgebraosp(2n + 1/2m) via
Green generators

T D Palev†
Laboratoire de Gravitation et Cosmologie Relativistes, Université Pierre-et-Marie-Curie,
4, place Jussieu, 75005 Paris, France

Received 10 January 1996

Abstract. An alternative description of the Lie superalgebraosp(2n + 1/2m) in terms of
generators and relations is given. The generators, called Green generators, are the root vectors
of osp(2n + 1/2m), corresponding to the orthogonal roots.

The root system of the orthosymplectic Lie superalgebraosp(2n + 1/2m) reads [1]

1 = {ξεi + ηεj ; ξεi; 2ξεk|i 6= j = 1, . . . , m + n ≡ N; k = 1, . . . , m; ξ, η = ±}. (1)

The rootsε1, . . . , εN are orthogonal with respect to the Killing form onosp(2n + 1/2m).
In the present letter we describe the universal enveloping algebraU [osp(2n + 1/2m)] of
osp(2n+1/2m) in terms of the root vectorsa±

i ≡ e∓εi
, corresponding to∓εi , i = 1, . . . , N .

All a±
i are homogeneous elements withZ2 ≡ {0̄, 1̄}-grading

deg(a±
i ) ≡ 〈i〉 =

{
1̄ for i 6 m

0̄ for i > m.
(2)

Our main result is contained in the following theorem.

Theorem. U [osp(2n+ 1/2m)] is an associative (complex) superalgebra with 1, generators

a±
1 , a±

2 , . . . , a±
m−1, a

±
m, a±

m+1, . . . , a
±
m+n ≡ a±

N (3)

relations

[[[[ a
η

i , a
−η

j ]] , aη

k ]] = 2η〈k〉δjka
η

i ∀|i − j | 6 1 η = ± (4a)

{[a−η

m−1, a
η

m+1], [a−η
m , a

η

m+2]} = 0 (4b)

[[aη

N−1, a
η

N ], aη

N ] = 0 η = ± (4c)

andZ2-grading induced from (2).
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Throughout [x, y] = xy −yx, {x, y} = xy +yx, [[x, y]] = xy − (−1)deg(x) deg(y)yx. This
theorem extends the results of [2], where we have shown thatosp(2n+ 1/2m) is generated
by operators (3), which satisfy the relations

[[[[ a
ξ

i , a
η

j ]] , aε
k ]] = 2ε〈k〉δjkδε,−ηa

ξ

i − 2ε〈k〉(−1)〈j〉〈k〉δikδε,−ξ a
η

j

i, j, k = 1, . . . , N ξ, η, ε = ±.
(5)

Equations (5) are among the supercommutation relations of all Cartan–Weyl generators

a
ξ

i , [[aη

j , aε
k ]] i, j, k = 1, . . . , N ξ, η, ε = ±. (6)

The rest of the supercommutation relations follow from (5) and the (graded) Jacoby identity
(i, j, k, l = 1, . . . , N ; ξ, η, ε, ϕ = ±):

[[[[ a
ξ

i , a
η

j ]] , [[aε
k , a

ϕ

l ]]]] = 2ε〈k〉δjkδε,−η[[aξ

i , a
ϕ

l ]] − 2ε〈k〉(−1)〈j〉〈k〉δikδε,−ξ [[aη

j , a
ϕ

l ]]

−2ϕ〈l〉(−1)〈j〉〈k〉δjlδϕ,−η[[aξ

i , a
ε
k ]] + 2ϕ〈l〉(−1)〈i〉〈j〉+〈i〉〈k〉δilδϕ,−ξ [[aη

j , aε
k ]] . (7)

Relations (4) are a small part of (5) and (7). According to the above theorem, however, all
equations (5) and (7) follow from (4). Therefore relations (4) contain all information about
osp(2n + 1/2m). This is essentially our new result.

The operators (3) with relations (5) are closely related to the generalized quantum
statistics, introduced by Green [3]:a±

1 , . . . , a±
m are para-Bose operators (parabosons),

whereasa±
m+1, . . . , a

±
m+n are para-Fermi operators (parafermions). Note that the parabosons

do not commute with the parafermions (in the Fock representaton the bosons anticommute
with the fermions [2]).

We refer to any set of generators (3) with relations (4) asGreen generators. G(n/m)

denotes theGreen superalgebra, namely the (free) associative algebra with unity 1,
generators (3), relations (4) and grading (2). The theorem asserts thatU [osp(2n+1/2m)] =
G(n/m).

One could prove the theorem by deriving (5) directly from (4). Here we give another
proof. To this end we recall the Chevalley definition ofU [osp(2n+1/2m)] and write down
explicit relations between the Green and the Chevalley generators. Let(αij ), i, j = 1, . . . , N

be anN × N symmetric Cartan matrix chosen as [4]

(aij ) = (−1)〈j〉δi+1,j + (−1)〈i〉δi,j+1 − [(−1)〈j+1〉 + (−1)〈j〉]δij + δi,m+nδj,m+n. (8)

Then U [osp(2n + 1/2m)] is defined as an associative superalgebra with 1 in terms of a
number of generators subject to relations. The generators are the Chevalley generatorshi ,
ei , fi (i = 1, . . . , N); the relations are the Cartan–Kac relations

[hi, hj ] = 0 (9a)

[hi, ej ] = aij ej (9b)

[hi, fj ] = −aijfj (9c)

[[ei, fj ]] = δijhi (9d)

the e-Serre relations

(e1) [ei, ej ] = 0 for |i − j | > 1 (e2) [[ei, [ei, ei±1]]] = 0 i 6= N

(e3) {[em−1, em], [em, em+1]} = 0 (e4) [eN, [eN, [eN, eN−1]]] = 0
(10)

and thef -Serre relations obtained from (10) by replacingei with fi everywhere. The
grading onU [osp(2n + 1/2m)] is induced from deg(em) = deg(fm) = 1̄, deg(ei) =
deg(fi) = 0̄ for i 6= m.

Let us only note the connection to the root system (1). The 3N Chevalley elements
are the simple rootshj = εj − εj+1, j = 1, . . . , N − 1, hN = εN , the simple root vectors
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ei ≡ ehi
and the negative root vectorsfi ≡ e−hi

, i = 1, . . . , N . Then (hi, hj ) = αij or
equivalently(εi, εj ) = −(−1)〈i〉δij [4].

Introduce the following elements inU [osp(2n + 1/2m)] (i 6= N):

a−
i = (−1)(m−i)〈i〉√2[ei, [ei+1, [. . . , [eN−2, [eN−1, eN ]] . . .]]] a−

N =
√

2eN (11a)

a+
i = −

√
2[fi, [fi+1, [. . . , [fN−2, [fN−1, fN ]] . . .]]] a+

N = −
√

2fN (11b)

which will be refered to ascreation (ξ = +) and annihilation (ξ = −) operators(CAOs).
The proof of the theorem will be a consequence of a few propositions. The aim is to

show that the relations among the Chevalley generators hold if and only if theCAOs (11)
are Green generators.

Proposition 1. For anyi 6= N

[[ei, a
+
j ]] = −(−1)〈j+1〉δij a

+
j+1 (12a)

[[fi, a
−
j ]] = −(−1)〈i〉+〈i+1〉δij a

−
j+1 (12b)

[[ei, a
−
j ]] = −(−1)〈j〉δi+1,j a

−
j−1 (12c)

[[fi, a
+
j ]] = δi+1,j a

+
j−1. (12d)

Proof. We skip the proof of (12a) and (12b). It is simple and follows only from (9), (e1)
and (f 1). Here are some key points in the proof of (12d).

(i) The casei < j − 1 follows only from (f 1); the casei = j − 1 reduces to the
definition of a+

i ; the casei = j is derived relatively easily from (f 1) and (f 2).
(ii) The casei = m > j. We know from above that [fm−1, a

+
m+2] = [fm, a+

m+2] = 0.
Therefore

a+
m−1 = [fm−1, [fm[fm+1, a

+
m+2]]] = [[fm−1, [fm, fm+1]] , a+

m+2].

Hence

[[fm, a+
m−1]] = [[fm, [[fm−1, [fm, fm+1]] , a+

m+2]]] = [[z, a+
m+2]]

where

z = [[fm, [[fm−1, [[fm, fm+1]]]]]]

= [[[[ fm, fm−1]] , [[fm, fm+1]]]] + [[fm−1, [[fm, [[fm, fm+1]]]]]]

= {[fm−1, fm], [fm, fm+1]} + [fm−1, {fm, [fm, fm+1]}]
= 0

according to (f 2) and (f 3). This is the only place one uses the Serre relation (f 3), which
was recently established [5]. Thus [[fm, a+

m−1]] = 0. Then by induction onj one obtains
that [[fm, a+

j ]] = 0 for anym > j .

(iii) The casei 6= m, i > j . Let 1 < i < N − 1. From above (since deg(fi) = 0̄)
[fi−1, a

+
i+2] = [fi, a

+
i+2] = 0. Therefore

[[fi, a
+
i−1]] = [fi, a

+
i−1] = [fi, [fi−1, [fi, [fi+1, a

+
i+2]]]] = [y, a+

i+2]

where

y = [fi, [fi−1, [fi, fi+1]]] = −[[[ fi+1, fi ], fi−1], fi ].

Now we use the following identity: if [a, c] = 0, then

[[[ c, b], a], b] = 1
2[[[ c, b], b], a] + 1

2[[[ a, b], b], c].
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It yields

y = −[[[ fi+1, fi ], fi−1], fi ] = − 1
2[[[ fi+1, fi ], fi ], fi−1] − 1

2[[[ fi−1, fi ], fi ], fi+1] = 0

since from (f 2) [[fi±1, fi ], fi ] = 0. If i = N − 1 the proof is even simpler. Thus,
[[fi, a

+
i−1]] = 0 for any i 6= m. Let m 6= i > j + 1. Assume [fi, a

+
j ] = 0. Then

[fi, a
+
j−1] = [fi, [fj−1, a

+
j ]] = [[fi, fj−1], a+

j ] + [fj−1, [fi, a
+
j ]] = 0.

Hence [fi, a
+
j ] = 0 for eachm 6= i > j (i 6= N).

From (i)–(iii) follows (12d). The derivation of (12c) is similar. This completes the
proof. �
Proposition 2. U [osp(2n + 1/2m)] is generated by theCAOs (11). More precisely,

hN = − 1
2[[a−

N, a+
N ]] eN = 1√

2
a−

N fN = − 1√
2
a+

N (13a)

hi = 1
2[[a−

i+1, a
+
i+1]] − 1

2[[a−
i , a+

i ]] ei = 1
2[[a−

i , a+
i+1]]

fi = 1
2[[a+

i , a−
i+1]] i 6= N.

(13b)

Proof. Equations (13a) are evident. From (9) and (11) [[a−
N−1, a

+
N ]] =

−2[[eN−1, eN ], fN ] = −2[eN−1, [eN, fN ]] = 2[hN, eN−1] = 2eN−1. Thus expressions (13b)
for eN−1 and similarly forfN−1 hold. Then

1
2[[a−

N, a+
N ]] − 1

2[[a−
N−1, a

+
N−1]] = −hN − 1√

2
[[[[ eN−1, eN ]] , a+

N−1]]

= − hN − 1√
2

[[[[ eN−1, a
+
N−1]] , eN ]] − 1√

2
[[eN−1, [[eN, a+

N−1]]]]

= hN−1

and (13b) holds for i = N − 1. The rest is proved by induction. Assume (13b) holds for
k = i + 1, i + 2, . . . , N − 1. Then

1
2[[a−

i , a+
i+1]] = 1

2(−1)〈i+1〉[[[[ ei, a
−
i+1]] , a+

i+1]]

= 1
2(−1)〈i+1〉[[ei, [[a−

i+1, a
+
i+1]]]]

= −(−1)〈i+1〉[[ei, hi+1 + hi+2 + · · · + hN ]]

= ei

similarly one verifies (13b) for fi . Finally
1
2[[a−

i+1, a
+
i+1]] − 1

2[[a−
i , a+

i ]] = 1
2[[a−

i+1, a
+
i+1]] − 1

2(−1)〈i+1〉[[[[ ei, a
−
i+1]] , a+

i ]]

= 1
2[[a−

i+1, a
+
i+1]] − 1

2[[[[ ei, a
+
i ]] , a−

i+1]] − 1
2(−1)〈i+1〉[[ei, [[a−

i+1, a
+
i ]]]]

= [[ei, fi ]]

= hi.

Hence equations (13b) hold for anyi 6= N . �
Proposition 3. The CAOs (11) are Green generators, i.e. they satisfy equations (4).

Proof. Replacingei and fi in (12) with the corresponding expressions from (13b), one
derives equations (4a) for all |i − j | = 1 andη = ±. Equation (4a), corresponding to
i = j , follows from [[a−

i , a+
i ]] = −2(hi +hi+1 +· · ·+hN), i = 1, 2, . . . , N , the Cartan–Kac

relations (9) and the Cartan matrix (5). Equations (4b, c) follow immediately from the Serre
relations (e3), (f 3), (e4), (f 4) (see (10)) and the definition (11) of theCAOs. �
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So far we have established that the operators (11) can be considered as new generating
elements ofU [osp(2n + 1/2m)] (proposition 2), which satisfy the Green relations (4)
(proposition 3). ThereforeU [osp(2n+1/2m)] is either equal to the Green algebraG(n/m)

or is a factor algebra of it. In order to show thatU [osp(2n + 1/2m)] = G(n/m) we need
to prove that any relation inU [osp(2n + 1/2m)] is a consequence of the Green relations.
To this end it suffices to show that equations (9) and (10), expressed in terms of theCAOs
according to (13), can be derived from (4).

Proposition 4. Let a±
i , i = 1, . . . , N be Green generators, i.e. they obey relations (4).

Then the operatorshi , ei , fi (i = 1, . . . , N), defined with (13), satisfy equations (9) and
(10).

Proof. The proof resolves into several cases. We mention some of them. Equation (9a) is
trivial. Consider for instance (9b) for i, j 6= N . From the graded Jacoby identity one has

[hi, ej ] = 1
4[[[ a−

i+1, a
+
i+1]] , [[a−

j , a+
j+1]]] − 1

4[[[ a−
i , a+

i ]] , [[a−
j , a+

j+1]]]

= 1
4[[[[[[ a−

i+1, a
+
i+1]] , a−

j ]] , a+
j+1]] + 1

4[[a−
j , [[[[ a−

i+1, a
+
i+1]] , a+

j+1]]]]

− 1
4[[[[[[ a−

i , a+
i ]] , a−

j ]] , a+
j+1]] − 1

4[[a−
j , [[[[ a−

i , a+
i ]] , a+

j+1]]]] .

Applying (4) here one ends up with (9b). The other cases of (9) are similar or simpler.
Special care should be taken for the grading of the operators that appear. To check (10)
one needs (i, j 6= N )

[[ei, ej ]] = 1
4[[[[ a−

i , a+
i+1]] , [[a−

j , a+
j+1]]]]

= 1
4(−1)[〈i〉+〈i+1〉+]〈j〉[[a−

j , [[[[ a−
i , a+

i+1]] , a+
j+1]]]] + 1

4[[[[[[ a−
i , a+

i+1]] , a−
j ]] , a+

j+1]]

which, taking into account that(−1)[〈i〉+〈i+1〉]〈i−1〉+〈i〉〈i+1〉 = (−1)〈i〉, finally yields

[[ei, ej ]] = 1
2(−1)〈i+1〉δi+1,j [[a−

i , a+
i+2]] − 1

2(−1)〈i〉δi,j+1[[a−
i−1, a

+
i+1]]

i, j = 1, . . . , N − 1. (14)

From (14) one derives the Serre relations (e1), (f 1), (e2), (f 2). Similarly
(e3), (f 3), (e4), (f 4) follow from (4b). For instance{[em−1, em], [em, em+1]} =
− 1

4{[a−
m−1, a

+
m+1], [a−

m, a+
m+2]} = 0 and [eN, [eN, [eN, eN−1]]] = −[[a−

N−1, a
−
N ], a−

N ] = 0.
HenceU [osp(2n + 1/2m)] = G(n/m), which completes the proof of the proposition and
hence of the theorem. �

We have shown that apart from the Chevalley definition the associative superalgebra
U [osp(2n + 1/2m)] and hence the Lie superalgebraosp(2n + 1/2m) allows an alternative
description in terms of generators (3) subject to the Green relations (4). This, in particular,
means that the Green generators satisfy equations (5), i.e.a±

1 , a±
2 , . . . , a±

m are para-Bose
operators anda±

m+1, . . . , a
±
m+n are para-Fermi operators.

Our interest in the present work originates from the study of the Wigner quantum
oscillators [6]. The defining relations for anN -dimensional such oscillator are∑N

i=1[{a+
i , a−

i }, a±
k ] = ±2a±

k . The operators (5) satisfy these equations for anym =
1, . . . , N and therefore provide examples of Wigner oscillators. Theosp(3/2) oscillator
was studied in [7]. Already in this quite simple case the verification of all triple relations (5)
is a non-trivial task and it is going to be much more difficult for the generalosp(2n+1/2m)

oscillator. The theorem now asserts that it is sufficient to check (or, which is more
important, to solve) the smaller set of equations (4), which is a considerable simplification.
The same arguments also hold in the more general context of the representations of
osp(2n + 1/2m), which are at present only classified [1] (explicit expressions exist only
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for osp(1/2) [10], osp(2/2) [11] andosp(3/2) [9]). We hope that relations (4), combined
with the generalization of the Green anzatz technique [12], provide a good background for
constructing new representations. The same holds for any of the subalgebrasosp(2n/2m),
gl(n/m), so(2n + 1), so(2n), gl(n) andgl(m) since the latter can be expressed in a rather
natural way via Green generators (see (2.5)–(2.9) in [9]). These are the pre-oscillator
realizations, which in the Fock representation reduce to the known Schwinger realizations.

Recently, it was shown that the Green description with only parafermions (m = 0) or
with only parabosons (n = 0) can be modified to the quantum algebrasUq [so(2n + 1)]
[13] and Uq [osp(1/2m)] [14]. This leads to natural Hopf algebra deformations of the
para-Fermi and of the para-Bose statistics. We believe it will be possible to generalize
the Green description to the quantum algebraUq [osp(2n + 1/2m)]. The latter would
amount to a simultaneous deformation of the parabosons and the parafermions (in the Fock
representation, of the bosons and the fermions) as one single supermultiplet.

The author is grateful to Professor R Kerner for the kind hospitality at the Laboratory of
Gravitation and Relativistic Cosmology in the University of Pierre and Marie Curie. It is a
pleasure to thank Dr N I Stoilova for constructive discussions. The research was supported
through contract8–416 of the National Science Fund of Bulgaria.
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